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1. OBJECTIVES.

This report deals with the identification of appropriate hydrogen bacteria, as well as the development of

suitable technique to cultivate them on large scale in order to extract and purify the required quantity of
thq hydrogenase enzyme. This enzyme will be employed as a biochemical decompression agent during

the first phase of animal experiments using hydrogen diving.

1.1. General outline of the project.

Prevention of decompression sickness relies upon the slow release and elimination of the dissolved
gases in the diver's tissues by a physical process during ascent. The basic flaw of this method is that
the diver's tissues are supersaturated with gas during ascent, in order to provide the driving force for its
elimination into the ambier.t milieu (used as the gas sink) down a pressure concentration gradient. As
supersaturation is the basic cause of decompression sickness, current ascent procedures cannot be
considered as completely safe.

Biochemical decompression could be an alternate method for insuring faster and safer diver ascent
rates. This method would rely on the chemical elimination of gases within the body, using the tissues
as the gas sink. In order to accomplish this, the diving gas must be amenable to biochemical
manipulation. The two major components of the currently used diving mixtures are helium and nitrogen.
Both are beyond biochemical manipulation since helium is chemically inert on one hand, while on the
other hand the potential reaction products of nitrogen would be highly toxic to the diver.

it has now been demonstrated that hydrogen (H,) may be substituted for helium or nitrogen, and
was found to be especially valuable in deep dives (31,32). H, may be enzymatically oxidized by oxygen
(Q,) in the tissues and eliminated as water from the body. This would only require the presence in the
tissues of the enzyme “hydrogenase” which can catalyze the oxidation of hydrogen to water. However
very little is known about the preserce of such an enzyme in mammalian system, but it is widely
assumed that human tissues lack the abllity to metabolize molecular hydrogen. Therefore, it is proposed

to present the tissue with the enzyme hydrogenase (conveniently obtained from hydrogen oxidizing




bacteria that are widely distributed in nature), thus enabling the tissue to oxidize the dissoived hydrogen
and eliminate it as water.

12 Specific objectives of the present study.

A demonstration of the feaslb.illty of blochemical decompression is therefore contingent upon the
identification of a suitable bacteria and obtaining the critical enzyme from it in a form that can be
safely and efficiently administered to experimental subjects.

The specific objectives of the present study were:

a) to identify an appropriate microorganism as a source of a hydrogenase enzyme that can
function under the physiological conditions that prevail in mammalian tissues (O, pressure, ionic
composition, pH, temperature etc.)

b) to select a suitable method to grow this microorganism on large scale, in order to extract and
purify substantial amounts of active hydrogenase to initiate the preliminary experiments in laboratory

animals (Wistar rats).

2. SELECTION OF Alcaligenes eutrophus AS THE HYDROGENASE SOURCE.
2.1. Hydrogen-oxidizing bacteria: Historical aspects.

H, oxidization by some unknown agent present in the soil was detected as early as the middie of
19th century, but that this process was mediated by a microorganism became evident only at the
beginning of this century. Kaserer (in 13) reported isolation of an autotrophic bacteria
(Hydrogenomonas pantotropha) capable of living on energy liberated through oxidization of H, gas by
Q,. The term "Knaligasbacteria® (52) was also used to describe this group of bacteria because of their
ability to grow under H,-Q,-CO, atmosphere. These hydrogen-oxidizing bacteria were once thought to
form a taxonomic group and were classified under a special genus, "Hydrogenomonas®, but this

classification was later rejected because of increasing heterogeneity found among strains, and therefore




the individual species have been placed later under pre-existing genera of heterotrophic bacteria - such
as Alcaligenes, Pseudomonas and so on.

Ever since Kaserer's discovery of the Hydrogen-oxidizing bacteria biochemists were in search of an
enzyme system in these organisms, which catalyzed oxidation of molecular H,. Finally in 1931,
Stephenson and Stickiand (14,15) .demonstrated the existence in Escherichia coli of a "hydrogenase”
enzyme which was able to catalyze the reduction of methylene blue by molecular H,. Attempts to
isolate hydrogenases and study their biochemical properties were largely unsuccessful for over 40 years
thereafter. Due to the efforts by Schlegel and associates in Europe, and Mortenson and others in the
United States the study of the physiology and biochemistry of hydrogen bacteria and of the regulation of
the hydrogenase enzyme system eventually received an unprecedented boost in the scientific
community. The three international symposiums (36,37,53) and numerous reviews on hydrogen
metabolism and hydrogenases (13,17,18,19,21,42,51) indicate the growing interest in the biochemistry,
genetics and biotechnological potentialities of hydrogen-oxidizing bacteria, particularly the hydrogenase
enzyme systems in these microorganisms. [t was significant to note that the 1980s witnessed new and
exciting key discoveries in bacterial hydrogenase research, not the least of which include (i) identification
of nickel as an essential component of a large number of hydrogenases; (ii) detailed characterization of
the physical, spectroscopic and redox properties of metal clusters in these enzymes; (i) preliminary
crystallographic studies; (iv) the cloning and sequencing of hydrogenase genes from several diverse
species of bacteria; and (v) biotechnological exploitation of the enzyme for industrial

use.

2.2. Hydrogenases: Occurrence and general characteristics.
The term “hydrogenase" refers to enzymes that catalyze the consumption or evolution of molecular

hydrogen according to the reaction:

H? « 2H* + 26




All hydrogenases are bidirectional to some extent in vitro, but the enzyme appears to catalyze only H,
oxidation or reduction under physiological conditions. Hydrogenases have been found in a wide variety
of micro-organisms (13,17,18,19,21,22), including anaerobic, aerobic and photosynthetic bacteria, and
alsp in almost 50% of eukaryotic algae and in some facultative anaerobic protozoans (64). Their
presence have also been reported.ln higher plants and in animal species (23). The basic processes of
hydrogen utilization by various bacteria in the presence of different hydrogen acceptors are depicted in
Figure 1.

Hydrogen evolution usually occurs in anaerobic microorganisms, and serves to get rid of excess
reductant when protons are the only available oxidant (33). On the other hand, H, utilization or
consumption can occur in aerobic as well as anaerobic bacteria, and is linked to ATP-producing electron
transport systems. Anaerobic bacteria can oxidize H, using sulfate, sulfur, CQO,, nitrate etc. as the
terminal electron acceptor, and the photosynthetic bacteria use H, and other compounds as the
reductant for CQ, fixation (35). Aerobic N,-fixing bacteria evolve and consume H,, and among this
group are Rhizobia, the Azotobacter and the Cynobacteria. H, evolution by these micro-organisms are
ATP-dependent and is catalyzed by nitrogenase but a hydrogenase is responsible for H, oxidation in
these microorganisms.

A group of aerobic H,-oxidizing bacteria and the hydrogenase enzyme system in them have
received special attention during the last twenty years. This group of bacteria is strictly defined by their
unique, ATP-independent enzymatic capability to utilize gaseous hydrogen as electron donor with
oxygen as the final electron acceptor, and to fix carbon dioxide. These bacteria are different from those
other aerobic organisms that can oxidize hydrogen but are unable to fix carbon dioxide autotrophically.
These organisms are also different from the bacteria that utilize hydrogen under anaerobic conditions
with sulfate, CQ,, etc. as hydrogen acceptbrs.

Hydrogenases isolated from diverse bacteria possess the fundamental property of reversible
activation of hydrogen. Traditionally, hydrogenases have been broadly classified based upon their

physiological roles either as ‘uptake’ - hydrogenases (responsible for utilization of molecular hydrogen
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different hydrogen acceptors (54).




from the environment as an energy source) or as ‘bidirectional’ H, evolution hydrogenases employing
the protons as the terminal electron acceptor. However, among genera, hydrogenases are very diverse
with regard to their intra-cellular localization, structural and catalytic properties and metallic composttion.
Oygr a dozen hydrogenases f:om a diverse group of bacteria have been isolated, purified and
characterized. They were all foun& localized either in the cytoplasm or in the membrane or both of the
bacteria (18,22 and Appendix 1). The majority of the K, -oxidizing bacteria contain a single
membrane-bound hydrogenase while a few species, for example Nocardia opaca, contain only the
cytoplasmic or 'soluble’ enzyme. The aerobic H,-oxidizing bacteria, Alcaligenes eutrophus, on the other
hand contains both soluble and membrane-bound enzymes (8,17), and each enzyme serve two separate
functions. The soluble enzyme catalyzes H,-dependent NAD" reduction for CQ, -fixation and the
membrane-hound enzyme is linked to electron-transport chain and energy production. (See Figure 2 for
a diagrammatic representation of the soluble and membrane-bound hydrogenase of A. eutrophus.)
Hydrogenases isolated from different organisms differ greatly from each other but a common
feature is that they all are metalloenzymes and contain non-haem iron and acid-abile sulfur in equivalent
amounts. The iron-sulfur core (Figure 3) at the active center of the enzyme molecule consists of one or
several [4Fe-4S], [3Fe-3S] and or [2Fe-2S] clusters, and these metal clusters are thought to be the
redox-active component in these enzymes (24). In addition to iron-sulfur centers, spectroscopic and
analytical studies revealed the presence of the transition metal nickel (4) and occasionally selenium (38)
in the active center of several hydrogenase enzymes. On the basis of these studies and differences in
catalytic functions, hydrogenases have been classified into several categories such as, protein containing
nickel ([Ni-Fe]-hydrogenase), protein lacking nickel ([Fe}-hydrogenase), and protein containing selenium
and nickel ([Ni-Fe-Se]-hydrogenase) etc. (39). Bbth nickel and selenium are believed to play a
critical role in the synthesis cf active hydrogenase (4,38). Hydrogenases that contain only iron-sulfur
clusters are generally, but not always, susceptible to oxygen toxicity while [Ni-Fe]-hydrogenases are
more oxygen resistant, as Is the case with the soluble hydrogenase from A. eutrophus. By and large

[Ni-Fe]-hydrogenases catalyze the consumption of hydrogen (H,-uptake' hydrogenase or Hup) while the
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Figure 2. Schematic representation of the hydrogen oxidizing enzyme systems in Alcaligenes eutrophus
(After Schiegel & Schneider 36): The membrane linked hydrogenase is considered to be
the first component of the respiratory chain, where the electrons donated by molecular H, are
first transferred to a primary acceptor, (possibly a quinone) and from there to the final
acceptor O, - mediated by cytochromes. The primary function of the soluble hydrogenase is
suggested to be the generation of NADH, used as the reducing power for CQ, fixation, but it
may as well channel electrons into the respiratory chain.
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[Fe]-only hydrogenases are involved in the production of hydrogen (Hpr). Most reports indicate that the
maximum rate of H, production or consumption occur at acid and alkaline pH, respectively, as might be
expected of reactions in which free protons are a substrate or product.

) Based on kinetic, spectroscopic and isotope exchange data several reaction mechanisms have
been proposed for the activation of hydrogen by the enzyme. Most of the models are of multicluster
enzymes from strict anaerobes. Howaever, there is a general consensus (17,24,25,55) that the catalysis
involves binding of molecular hydrogen to a metal-sulfur cluster, followed by heterolytic cleavage of H,
to produce a free proton and an enzyme-metal hydride (25,55). Cammack et al. (56,57) proposed a
general working model (Figure 4) for the [Ni-Fe]-hydrogenase molecule to explain the role of nickel in
the activation of hydrogen and to rationalize the available evidences on the reversible inactivation of the
enzyme by oxygen.

The hydrogenase enzyme proteins are quite varied with respect to their molecular mass and
sub-unit composition; however, the largest group now appears to be those with two (¢ and ) subunit
composition, with a molecular mass approximately 60 and 30 KD each. Examples include the dimeric
hydrogenases isolated from hydrogen bacteria [Alcaligenes eutrophus H16 (16), Alcaligenes latus (41)],
sulfur bacteria [Desulfovibrio gigas (42)] and photosynthetic bacteria [Rhodobacter capsulatus (43)].
The membrane-bound hydrogenases from the aerobic N,-fixing bacteria Bradyrhizobium japonicum (44)
and Azobacter vinelandii (45) have also been shown to be dimers. The NAD-linked soluble
hydrogenases of both Alcaligenes eutrophus and Nocardia opaca Ib have four non-identical subunits
each (13,46), and have complex immunological and catalytic properties. Several other hydrogenases
have only one subunit of varying molecular masses and their properties are still under investigation.

immunological relationship among hydrogenases have been studied (47,48) and found a

substantial degree of homology among the hydrogenases of a number of hydrogen-oxidizing bacteria.

2.3. Hydrogenases: Oxygen sensitivity.
As an electron acceptor of a high positive redox potential, oxygen enables cells to channel the
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Figure 4. Cammack’s (57) model for Hydrogenase molecule: The model depicts three functionally
different domains to explain the diversity, mode of action and oxygen sensitivity of

hydrogenases.

1. H-DOMAIN (Hydrogen activating site): Since all hydrogenases use the substrate hydrogen, they
all must contain gite for hydrogen binding. Components of this site may include the Fe-S clusters and
other metal fligands, such as Nickel and Selenium.

2. A-DOMAIN (Acceptor site): As hydrogenases use a wide array of different electron acceptors
(such as NAD', cytochromes, flavodoxin, ferredoxin etc) a somewhat complex acceptor domain is
assigned to the molecule. This site naturally will have the greatest diversity among hydrogenases.

3. R-DOMAIN (Regulatory site): To account for the mechanism of reversible and irreversible
inactivation of hydrogenases under reducing and oxidizing conditions, a regulatory site which is different
from H-Domain is postulated. Although removal of oxygen is a pre-requisite for activation of the
enzyme, it appears that oxygen does not bind to the H-site but rather interact with the R-domain and
changes the conformation of the molecule and prevents H, binding at H-domain. Oxygen-free
radicals-induced irreversible inactivation probably occurs at H-site.
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substrate-derived electrons through a long respiratory chain to generate metabolic energy with great
efficiency. In spite of its beneficial effects, oxygen also excerts detrimental effects on all organisms,
especially anaerobic organisms, and even the strictly aerobic bacteria and higher organisms suffer from
oxygen damage (58). For this reason, aerobic organisms have developed various defense mechanisms
to cope with oxygen toxicity. The .aerobic hydrogen-oxidizing and the nitrogen-fixing bacteria are
particularly susceptible to oxygen partial pressure during growth. The two critical enzyme systems -
hydrogenase and the ribulose biophosphate carboxylase - that are involved in the metabolism of
hydrogen-oxidizing bacteria (so far studied) showed oxygen sensitivity to varying degrees. Adams et al.
(17) have suggested that there is a correlation between the O, -sensitivity of a particular enzyme and its
physiological role, so that only those enzymes which normally catalyze H, production are very
Q,-sensitive while others are generally less sensitive. Two types of oxygen-inactivation of hydrogenases
have been proposed; oxygenation in which oxygen is'bound to the enzyme and therefore reversible, and
oxidation of a functional group and therefore irreversible. The chemical basis for these reactions are not
well understood, though the formation of inactive oxygen products, destabilization of the iron-sulfur
cluster and formation reactive oxygen species, such as superoxide anion (§9,61) have been implicated in
these processes. Electron paramagnetic resonance spectroscopy of various "oxygen-stable®
hydrogenases (60) produced only inconclusive results as to the mechanism of O, -inactivation. New
evidence (57,60,61) indicates that the reversible inactivation of the enzyme is dependent on the
environment, duration of O, exposure and reaction conditions, such as the type of catalytic mode the
enzyme exits. Certain hydrogenases are sensitive to oxygen in both catalytic mode and non-catalytic
mode while others are only in the catalytic mode. To explain some of these contradictions, Cammack et
al. (56) introduced a general model for hydrogenase enzyme molecule (Figure 4) and postulated that
oxygen binds to the regulatory site of fhe enzyme and gives a catalytically inactive conformation to the
molecule. In this state oxygen acts as a stabillizer in the sense that the binding of oxygen prevents the
enzyme from being converted into the catalytically active conformation, and that the hydrogen activation

site (Fe-S cluster) of the molecule is left intact. In the presence of a reduced electron carrier or

1




reductant, the enzyme is converted into the catalytically active conformation (8,61,62) and is rapidly
reduced by hydrogen. In this catalytic mode, many so called ‘oxygen-stable’ hydrogenases become
very oxygen-sensitive. In contrast, the activity of the oxygen-stable soluble hydrogenase of A. eutrophus
Is not inhibited by oxygen (61) in the catalytic mode. It is of great interest to note at this time that this
enzyme, unlike all other hydrogena'us so far studied, is also insensitive to carbon monoxide (63). This
enzyme can be purified and handled in air while they are Inactive, and can be deoxygenated/reactivated
without affecting activity.

2.4. Hydrogenase: Bio-technological applications.

The unique abillity of the hydrogenases in reversibly activating molecular H, lends itself to a variety
of practical uses. Since the discovery of photoproduction of H, from water by the coupling of
hydrogenase with chioroplasts (26,27,55), researchers have been intensely exploring numerous
biotechnological application of this enzyme. Solar energy conversion and storage, production of special
chemicals using H, as the ultimate reductant, biological co-factor regeneration by immobilized
hydrogenase, and many more such biotechnological applications are being attempted and pursued. It is
obvious that for every process in which H, gas is consumed or evolved, the use of hydrogenases is
worth considering, because it allows H, activation with minimum energy. Although there is much to be
leamed about the catalytic activities of hydrogenases at high pressure and about the immunological
response that their "in vivo" administration may provoke in the mammalian system, it is worth taking the
bold step of considering the use of injected hydrogenase to reduce the incidence of DCS after H, diving.
A number of new bioengineering techniques, such as enzyme conjugation (49) or encapsulation may be
employed to introduce the enzyme into the mammalian system without reducing its catalytic activity in
vivg'. Genetic engineering of the catalytically active component of the enzyme might enhance Its activity

and reduce any undesirable side effects of in vivo administration.
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2.5. Choice of A. eutrophus as the enzyme source.

Among the several aerobic hydrogen oxidizing bacteria that are potential source of the
hydrogenase enzyme, we have chosen Alcaligenes eutrophus H16 over other organisms for many
critical and practical considerations, foremost among them being the exceptional O, -stability and
carbon monoxide insensitivity of tﬁe soluble hydrogenase isolated from this bacteria. In addition:

1. This bacteria is a small (0.7 x 1 ), Gram-negative coccobacilius of no known pathogenic
property.

2. It can be grown in high rates and yields either autotrophically in the presence of H,, or
heterotrophically in the absence of H, in relatively simple media.

3. A wealth of information on its potential biotechnological application is available due to the
interest NASA has shown in exploring the use of this microorganism as a bioregenerative system for
distant space-flights.

4. Hydrogenases from A. eutrophus have been isolated and studied extensively and much
information is available about their enzymatic and structural characteristics. Some of the recent
advances in hydrogenase genetics (66,67) and the discovery of plasmids (28,50) in A. eutrophus that
may code for enzymes of H, activation/CQ, fixation make this organism ideally suited for bioengineering
manipulation and practical application such as in the hydrogen diving.

3. EVALUATION OF TECHNIQUES FOR MASS-PRODUCTION OF A. eutrophus.
3.1. Statement of the problem.

A. eutrophus, as any other aerobic H,-oxidizing bacteria, is a facultative autotroph and can grow
under a wide variety of conditions, either chemolithotrophically or heterotrophically. It is, therefore, not
surprising that numerous techniques for its culture under laboratory conditions have been reported in the
literature. Therefore, the question was to select a method that offered the best chance for an easy
scale-up, in order to harvest large amounts (several kilograms) of bacteria, which will yield enough

purified enzyme for use in the proposed research project. Cost-effectiveness, safety concemns, anui
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avallabllity of bacteria on demand were among some of the criteria in making the selection. For mass
production, several researchers employed chemolithotrophic batch technique, by continuous bubbling of
mineral medium with a H,-Q,-CQ, gas mixture to grow A. eutrophus autotrophically. Using this
prqcedure on a rather large scale, Bepaske and Meyer (7) reportedly obtained 25 g of dry cells per liter
of culture medium. Scaling-up suc;h a technique, however, would have required a special facility to meet
the stringent safety requirements involved in the handiing of large flows of H, gas mixtures. Anticipating
possible delays and prohibitive costs in growing the bacteria autotrophically on a large scale, alternate
methods were considered. Two techniques were evaluated and compared: the electrolytic
chemolithotrophic method described by Schuster and Schiegel (5) and the fructose-glycerol
heterotrophic method of Friedrich et al. (4).

3.2. Materials and methods.

Preparation of a sufficient volume of high density cell suspension grown under autotrophic
condition is a prerequisie for electrolytic or heterotrophic growth of A. eutrophus. The methods
described below for the preparation of the inoculum and for the assay of the activity of the enzyme in
whole cells are common to both procedures.

a) Preparation of inoculum.

Two vials of lyophilized A. eutrophus strain H16 (ATCC 17699) were suspended in 2-3 mi of
sterile mineral medium (1,5, and Appendix 2 for composition of the media). After allowing 34 h for
hydration, the bacterial suspension was transferred to a 500-ml Erdenmeyer flask containing 100 mi of the
same medium, which was previously saturated with a mbxture of H, (80%)-O, (10%)-CQ, (10%). For
preparation of the gas mbxture, a 2-vessel gasometer system as depicted in Figure 5 was employed.

About 5 | of gas were prepared at a time and then bubbled through the 100 mi of medium, over

a period of 15 min. This bubbling was generally repeated twice. A 0.2 u fiter was incorporated into the
line to sterilize the gas mixture. After bubbling, the flask was tightly sealed and incubated in a shaking

water-bath at 30 ° C for 16-20 h or until the optical density at 436 mu reached a minimum value of 1.0
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Figure 5. 2-Vessel gasometer system for preparing H,-Q,-CO, mbdures: Measured volumes of H,, O,
and CO, are sequentially injected into the mixing vessel by water displacement. Once the

desired composition of gas mix is obtained it was bubbled at a slow rate through the medium,
using the hydrostatic pressure in the water column as the driving force.
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and the bacteria passed the mid{og growth phase. The preparation was immediately used to inoculate
the electrolytic or heterotrophic culture media (described below). The inoculum prepared by the above

procedure remained viable up to 2 months when stored at 0-4 ° C under sterile conditions. The purity
and homogeneity of the bacteria was routinely checked by standard staining for gram-negative bacteria.

b) Assay of the soluble hydrc;genase activity in whole cells.
This assay was performed by the NAD reduction method (8). After determining the protein
content of washed cells, they were lysed by the addition of 0.005% hexadecyttrimethylammonium
bromide and the enzyme activity was assayed spectrophotometrically by recording the reduction of NAD

at 340 mu. In a typical assay, a reaction mixture of 3 mi contained about 2.90 m! of 50 mM Tris-HCI, pH
8.0, previously saturated with pure H,, 1 mM NAD" and about 100-200 x g of cell proteins. The reaction

was carried out at 30 °C in a bubble-forming anaerobic Thumberg Cell [Precision Cells Inc. (12)] and the
reaction was usually initiated by addition of 20-40 u! of enzyme from the side arm of the anaerobic cell.
A unit of enzyme activity was defined as the reduction of 1 um NAD"' per minute per milligram of protein.

¢) Chemolithotrophic electrolytic technique.

A. eutrophus can grow in a simple mineral medium containing a nitrogen source, potassium,
magnesium, calcium, phosphate, sulfate, bicarbonate, traces of iron and nickel, and dissolved gaseous
components such as H,, Q, and CQ, (1,5). Numerous studies have been done to define the conditions
for optima: growth for this bacteria by varying the composition of the mineral medium (2,3,6). In
particular, an absolute requirement of nickel was found for obtaining active growth of A. eutrophus (4),
but requirement for other trace metals such as cobalt etc. are not well ascertained. Another important
consideration was the rate of flow and composition of the gas mixture as was recommended by
previous investigators (7,8). Schuster and Schlegel (5) have concelved an elegant system to cultivate
A. eutrophus, using gaseous components (H, /O,) produced by electrolysis of the mineral medium in a
chemostat. The system was then bubbled with 10% CQ, in N, to provide a carbon source and to
maintain the pH. This chemostat was also employed to study the characteristics of steady state growth

of the bacteria by continuous circulation of fresh media while harvesting the cells at the same rate.
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Here at the Naval Medical Research Institute, Dr. LA. Kiesow has built (with the superb
technical help from Willlam Mints) and tested a pilot unit (Figure 6) similar to the Chemostat of Schiegel
(5). This unit was avallable for our initial investigation.

The 3iter fermenter cons]sted of a microcarrier spinner flask (Belco Biotechnology, NJ) fitted
with two large stainless steel de&rodes through the side-arm screw caps. The center-neck screw cap
was machined to accept a YS! O, electrode and two separate inlet and outlet ports for flushing the flask
with a mbaure of CQ,-N,. The fermenter electrodes were attached to a power source that was able to
deliver a maximum current of 1 ampere under fixed voltage. The Q, electrode was attached to a YSI
Q,-meter, the output signal of which was fed into a control unit. The electrolytic current was controlled
by this unit to an intensity directly proportional to the difference between the O, pressure in the medium
and a preset value of 0.25 atm. The O, pressure and the electrolytic events were continuously
monitored on a 2-channel ink recorder.

Before inltiating electrolysis, the spinner-flask containing 2.5-2.6 liters of the sterile mineral

medium was incubated in a water bath at 30 °C and stirred at a rate of 500-600 rpm. The medium was
then flushed with a sterile mixture of CQ,-N, (2%-98%) at a flow rate of 15-20 cc/mt. When the medium

reached bath temperature, 100-200 mi of the autotrophically grown inoculum was injected asceptically
through the gas inlet port (after temporarily disconnecting it) and the power source was switched on.

Recurring electrolytical events were generated in the chemostat by keeping the O, pressure below the
preset value of 0.25 atm by constant flushing of medium with N,-CQ, current. The growth of bacteria

was periodically monitored by measuring the turbidity of the culture at 436 mu.
d) Heterotrophic (fructose-glycerol) technique.

A. eutrophus, like other H,-oxidizing bacteria could be grown in the absence of H, in a culture
medium containing various organic compounds such as fructose, pyruvate, succinate etc. as energy and
carbon sources (9,10,11) but the appearance of specific enzymes of autotrophic metabolism in
heterotrophic growth depends on the nature of the organic substrate, and varies with organisms. The

degree of synthesis of key enzymes (particularly hydrogenase) of autotrophic metabolism in hydrogen
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Figure 6. Electroiytic fermenter for growing A. Eutrophus: H, and Q, are generated by electrolysis of
the mineral medium. The bacteria recombine them into water and liberate energy for growth.
Since the production of H, and Q, are stoichlometrically related, monitoring and controlling
the O, pressure is sufficient to operate the chemostat. The current is regulated proportionally
to the difference between the observed O, pressure and a preset value (typically 0.25 bar).
Additionally a N,-CO, mixture was continuously flushed through the fermenter.
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bacteria also vary with organism and organic substrate (9). For A. eutrophus, Friedrich et al. (4,10)
designed a heterotrophic culture condition that allowed optimal :::oression of both soluble and
membrane-bound hydrogenases using a fructose-glycerol med:.:y (composition of this medium is given

in Appendix 2). With the exception of the presence of 0.5% fructose, 0.2% glycerol, and 8 pm nickel,

this medium displays only minor rﬁodiﬁcations in composition from the mineral medium used for
chemolithotrophic growth.

For medium scale culture of the bacteria in the laboratory, 15 liters of this medium was
prepared, sterilized through a millipore Millidisk filtering system fitted with a 0.22 um Durapore
membrane cartridge and collected in a sterile incubation vessel (20 liter). The cap of the vessel (Figure
7) was fitted with inlet and outlet ports for flushing the medium with sterilized fresh air, and a central port
for a stainless steel impeller that is connected to a rheostat-controlled motor. This assembly was placed

in a water bath maintained at 30 ° C and flushed continuously with sterile air (150 ml/min) while stirring at
600 rpm.

About 100-200 mi of autotrophically grown bacteria was inoculated through the air inlet port
and the aeration and stirring continued. Bacterial suspension was drawn periodically to ascertain
turbidity due to growth and to assay the enzyme activity of the soluble hydrogenase. At the end of the
run (generally after 50-55 h) the bacteria were harvested by centrifugation. The pooled bacterial cells

were washed with cold potassium phosphate buffer (50 mM, pH 7.0) and kept frozen at -60 ° C for further

processing.

3.3. Resuits.
a) Electrolytic method.
A typical recording of the functioning of the chemostat is presented in Figure 8. At about every
2 min an electrolytic event took place and consequently O, and H, were generated in the medium.
When the O, pressure reached the maximum pre-set value at the control unit, the current input was

automatically tumed off but was tumed on again with the subsequent decrease in O, pressure (due
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Figure 7. 204 Fermenter for heterotrophic growth of A. eutrophus: 15 liters of mineral media containing
0.5% (w/v) fructose, 0.2% (w/v) glycerol and 200 mi of autotrophically grown A. eutrophus
were incubated in a water bath at 30°C. A constant stream of fiiter-sterilized air was bubbled
through the medium while it was being stirred at 600 rpm.
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partly to its consumption by bacteria and partly due to its elimination from the fermenter by N,-CQ,
flushing).

During four independent runs by the above procedure, bacteria continued to grow without
reaphlng a stationary phase over a 3-day period. However, it took about 15-20 h for the bacteria to
reach an apparent mid log phase (Figure 9).

When two runs were allowed to continue beyond three days, the sensing ability of the O,
electrode became severely impaired due to deposition of bacteria on electrode membrane. Thus
unattended operation of the system became impossible. Attempts to run the system in the continuous
mode were unsuccessful. Bacteria harvested after 80 hours of growth showed a cell concentration of
0.6 g/1 and a soluble hydrogenase activity of 1-2 units per mg protein.

b) Fructose-glycerol method.

In the heterotrophic method, A. eutrophus grew logarithmically until about 10-12 h. Thereafter
the growth rate was retarded, but the specific activity (activity per unit weight of protein) of soluble
hydrogenase, which was absent or very low during the logarithmic growth phase, steadily increased in
spite of the slow growth rate (Figure 10). The average yield of bacteria by this method was about 1.5
g/liter or about 20-25 gm per batch (wet weight). The average specific activity of the soluble

hydrogenase from harvested cells was three units or more.

3.4. Discussion.
a) Electrolytic method.

Our attempts to grow A. eutrophus using the electrolytic method showed the importance of
maintaining a high rate of flow of CO,-N, gas through the culture medium during the entire cperation.
The CQ, serves the dual purpose of furnishing the bacteria the carbon source and buffering the culture
media through CQ,-bicarbonate system for effective pH control. Although there exists a stoichiometric
relationship between the liberation of H, and Q, during electrolysis of water and their consumption by

the bacteria thereafter, a progressive enrichment of Q, relative to H, occurred in the fermenter because
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Figure 9. Growth curve for A. eutrophus in an electrolytic fermenter: The bacteria was grown, as
described in the text, in a 3 liter chemostat which was continuously flushed with a mbdure of
CO, and N,. Growth was followed by measuring the turbidity at 436 my at indicated time and
the values were plotted semilogarithmically. An optical density of 1.0 roughly corresponds to
0.5 gm bacteria per liter.
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Figure 10. Hydrogenase activity in cells of A. eutrophus grown with fructose and glycerol as carbon
sources: Cells were grown in minimal salt medium with 0.5%(w/v) fructose and 0.2% (w/v)
glycerol. Growth curve is depicted as a semilogarithmic plot (0). Cells were drawn at

indicated time intervals and the soluble hydrogenase activity ¢) in whole cells were assayed
by NAD-reduction method as described in the text.
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of loss of H, from the vessel due to Its negligible solubility in the medium, as well as Its rapid diffusibility.
Thus, increasing the CQ, -N, fiow tends to eliminate the O, build-up and brings its concentration well
below the preset value of 0.25 atm, allowing automatic but intermittent electrolysis and continuous
bagterial growth. Our results also §howed that the enzyme activity (1-2 units) of soluble hydrogenase
after 80 h of growth was better than what was reported (4) for autotrophically grown A. eutrophus. In
terms of yield of bacteria, however, the 0.6 g/liter was smaller than expected and was found
unsatisfactory. Attempts to grow and harvest the bacteria by continuous mode was also proved
unsuccessful. Though the electrolytic method (either batch or continuous mode) looked theoretically
attractive and has minimal safety hazards, the observed low yield of bacteria alone justified to explore
alternate techniques before attempting to scale-up the electrolytic method for mass production.

b) Heterotrophic method.

it was reported that maintenance of heterotfophic cultures of H,-oxidizing bacteria occasionally
resulted in the complete and irreversible loss of its ability to oxidize H,, due to the inadvertent selection
of mutants, the origin of which was found to be independent of the culture procedure (29). Since the
frequency of such mutations was unknown, the inoculum in the present study was prepared in strict
autotrophic conditions in the presence of H,-O,-CQ, mixture, thus eliminating the likelihood of producing
mutant organisms in the heterotrophic culture medium.

Our data on heterotrophic batch method were consistent with the original findings of Friedrich
et al. (4,10). The cells grew rapidly (with a doubling time of about 145 mts) until fructose was depleted
from the medium. Thereafter, the growth significantly slowed down due to a possible substrate
downshift to glycerol (glycerol is a poor carbon source for A. eutrophus), but the activities of the soluble
hydrogenase (and of the membrane-bound enzyme) increased dramatically during the transition from
fructose to glycerol. Substrates such as fructose, pyruvate, succinate etc., which support fast growth of
hydrogen bacteria, exerted a severe repression or inhibition of synthesis of certain enzymes of
autotrophic metabolism but they were derepressed during substrate shift to such poor carbon sources

as fumarate, glycerol, etc. (10). The reguiatory mechanisms invoived in this derepression phenomenon,
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Including that of hydrogenase enzymes, were not well understood. The relatively high concentration of

nickel (about 8 um) added to the medium in the cumrent procedure possibly contributed to an enhanced
synthesis of the enzyme, as was noted by others (65). Nevertheless, the hydrogenase activity obtained

from the current cell preparations was less than what was reported by Friedrich et al. ( 4). Further
refi;lement of the culture technique:was undertaken to enhance the activity of the enzyme.
c) Comparison of the two methods.

The electrolytic method is very elegant since it replaces the need for bubbling the mineral
medium with the explosive H, /O, mbture. Instead, this gas mixture was electrolytically generated in the
medium itself, at a concentration sufficient enough for the optimal growth of the organism. The method
involved essentially the autotrophic growth conditions, but the instrumentation and technique were rather
complex and time consuming, and the yield was very low. The method had several drawbacks that
seemed to prohibit its adoption for mass-scale production of the bacteria. The heterotrophic technique,
on the other hand, was less complex, and avoided the use of the inflammable H, /O, mixture entirely; i
was therefore the least hazardous method. Only simple equipments and minimal technical skills were
required to operate the heterotrophic culture system. Besides, both the quantity of bacteria harvested
per unit volume of medium and the hydrogenase activity found per unit mass of protein were
significantly higher in the heterotrophic method than in the electrolytic method.

d) Scale-up and mass production.

A significant advantage of the heterotrophic method was that direct scale-up of the method was
feasible using a standard industrial fermenter (40-300 liter capacity), while the electrolytic method would
require the construction of an altogether new and complex fermenter, with sizeable financial investment.
in the former method, bacteria can be grown to predictable quantities by controlling the fructose
concentration and the size of the fermentation vessel.

Following our pilot studies, the heterotrophic method was successfully adapted for large scale
cultivation of the bacteria at the Bio-Scale-Up Facility of the University of Maryland. In accordance with

our specifications, under a U.S. Navy contract, this facllity grew A. eutrophus in fructose-glycerol
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medium in a 35-iter standard fermenter and obtained about 10 g/liter of bacteria. Production of
bacteria, using an industrial fermenter (300-liter capacit ' at the same facility was envisaged, and should
produce large amounts of cells that would be required to purity the soluble hydrogenase enzyme

needed in the H, diving experiments at Naval Medical Research Institute.

4. CONCLUSION.

After examination of the characteristics of various species of H,-oxidizing bacteria, it was established
that Alcaligenes eutrophus H 16 (ATCC 17699) was the most suitable hydrogenase enzyme source for
the feasibility study of biochemical decompression in animal, using H, gas mixtures. This choice was
primarily based on the exceptional Q,-resistance of the soluble hydrogenase isolated from this organism
and the ability of this enzyme to function under normal physiological conditions. In addition, the
biochemical and immunological properties of this enzyme have been extensively studied and there is an
ongoing interest of its use as a versatiie biotechnological tool for several industrial applications. For
these reasons, methods for growing A. eutrophus were reviewed with special consideration for its safe
and economical large scale production. Two methods that did not involve handling of large quantities of
the explosive H,-Q, mixtures were studied under laboratory conditions and the results were compared.
After careful evaluation of the results of these pilot studies, a heterotrophic culture procedure (using
fructose and glycerol) was selected and successfully tested for large-scale production at an external
facllity through a private contractor.

The fulfillment of these two milestones of the research project allows NMRI's investigators to proceed
to the next phase of the research: the isolation of pure hydrogenase enzyme in sufficient amounts,

tolerance studies of the enzyme in mammalian system, and development of techniques to evaluate and

quantitate the enzyme activity in vivo.
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APPENDIX 2

COMPOSITION OF CULTURE MEDIA

A._Electroivtic Cultyre
25 mM Na2HPO4 |
11 mM KH2PO4
7.6 mM Ammonium Sulfate
0.8 mM MgSo4
145 uM CaSO4
5.3 uM NiSO4
0.1 mg% Ferric Ammonium Citrate

6 mM Sodium bicarbonate

pH 7.0

. _Heterotrophi Htyr
25 mM Na2HPO4
11 mM KH2PO4
37.4 mM NH4Cl
0.8 mM MgSO4
180 uM CaCi2
8 uM NiSO4
0.5 mg% Ferric Ammonium Citrate
6 mM Sodium Bicarbonate
0.5 % (w/v) Fructose
0.2 % (w/v) Glycerol

pH 6.8-7.0

Note: Inoculum for both culture procedures was grown in the electrolytic culture media.
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